Electrical current through DNA containing mismatched base pairs.

نویسندگان

  • Neranjan Edirisinghe
  • Vadym Apalkov
  • Julia Berashevich
  • Tapash Chakraborty
چکیده

Mismatched base pairs, such as different conformations of the G.A mispair, cause only minor structural changes in the host DNA molecule, thereby making mispair recognition an arduous task. Electron transport in DNA that depends strongly on the hopping transfer integrals between the nearest base pairs, which in turn are affected by the presence of a mispair, might be an attractive approach in this regard. We report here on our investigations, via the I-V characteristics, of the effect of a mispair on the electrical properties of homogeneous and generic DNA molecules. The I-V characteristics of DNA were studied numerically within the double-stranded tight-binding model. The parameters of the tight-binding model, such as the transfer integrals and on-site energies, are determined from first-principles calculations. The changes in electrical current through the DNA chain due to the presence of a mispair depend on the conformation of the G.A mispair and are appreciable for DNA consisting of up to 90 base pairs. For homogeneous DNA sequences the current through DNA is suppressed and the strongest suppression is realized for the G(anti).A(syn) conformation of the G.A mispair. For inhomogeneous (generic) DNA molecules, the mispair result can be either a suppression or an enhancement of the current, depending on the type of mispairs and actual DNA sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactivity of ferrocenylcarbodiimide with DNA duplex containing single-mismatched base pairs.

Ferrocenylcarbodiimide (1), which is known to react with a guanine (G) or thymine (T) base of single stranded DNA, was allowed to react with DNA duplex having a single mismatched base pair of G-T, T-T, or T-cytosine (C). Electrophoreograms of the reaction mixture showed that 1 could react with G or T base of the mismatched sites on the DNA duplex. However, 1 also reacted with the G base of the ...

متن کامل

Hairpin formation within the enhancer region of the human enkephalin gene.

The 3',5'-cyclic adenosine monophosphate (cAMP)-inducible enhancer of the human enkephalin gene is located within an imperfect palindrome of 23 base pairs. We have found that a 23-base-pair oligonucleotide duplex containing the enhancer undergoes a reversible conformational transition from the duplex to two individual hairpin structures each formed from one strand of the duplex. Each individual...

متن کامل

DNA Base Pair Mismatches Induce Structural Changes and Alter the Free Energy Landscape of Base Flip

Double-stranded DNA may contain mismatched base pairs beyond the Watson-Crick pairs guanine-cytosine and adenine-thymine. Such mismatches bear adverse consequences for human health. We utilize molecular dynamics and metadynamics computer simulations to study the equilibrium structure and dynamics for both matched and mismatched base pairs. We discover significant differences between matched and...

متن کامل

Mismatch extension ability of yeast and human DNA polymerase eta.

DNA polymerase eta (Poleta) functions in error-free replication of UV-damaged DNA, and in vitro it efficiently bypasses a cis-syn T-T dimer by incorporating two adenines opposite the lesion. Steady state kinetic studies have shown that both yeast and human Poleta are low-fidelity enzymes, and they misincorporate nucleotides with a frequency of 10(-2)-10(-3) on both undamaged and T-T dimer-conta...

متن کامل

A structural determinant in the uracil DNA glycosylase superfamily for the removal of uracil from adenine/uracil base pairs

The uracil DNA glycosylase superfamily consists of several distinct families. Family 2 mismatch-specific uracil DNA glycosylase (MUG) from Escherichia coli is known to exhibit glycosylase activity on three mismatched base pairs, T/U, G/U and C/U. Family 1 uracil N-glycosylase (UNG) from E. coli is an extremely efficient enzyme that can remove uracil from any uracil-containing base pairs includi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 21 24  شماره 

صفحات  -

تاریخ انتشار 2010